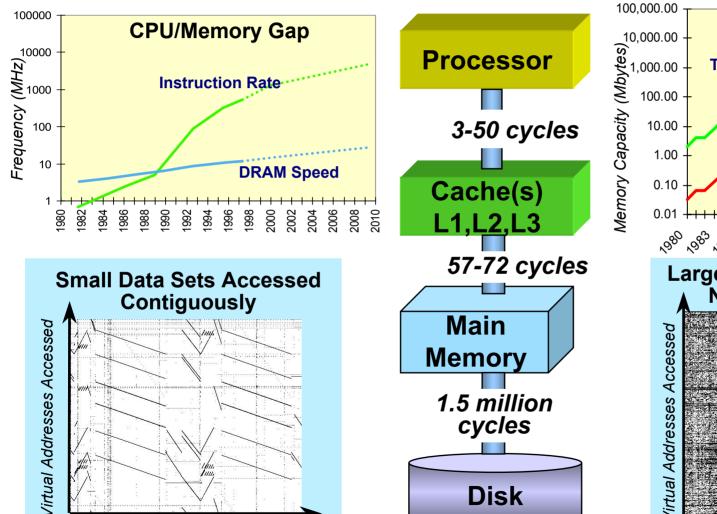


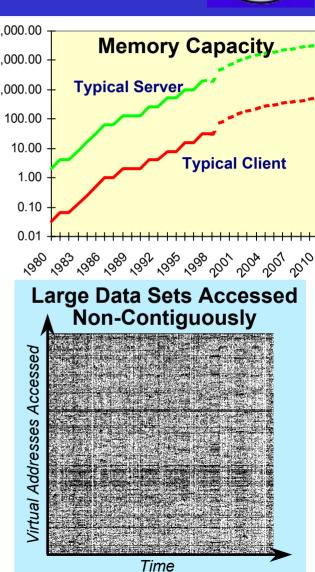
7th PI Meeting

New Orleans, LA May 17-18, 2001 Robert B Graybill

(703) 696-2220

Fax: (703) 696-4534


email: rgraybill@darpa.mil



Time

DIS Motivation

Memory access lags memory growth and processor performance

Disk

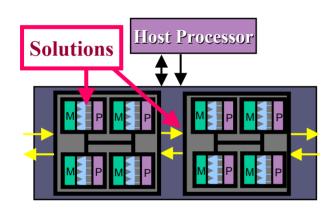
DIS Program Application Tenets

Data Intensive Applications Are:

- Large high-rate data streams (data-rate limited)
- Distributed data access (non-contiguous data)
- Dynamic data accesses (lack of access predictability)

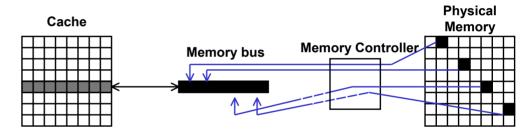
Data Intensive Applications Are NOT:

Applications with small working sets of contiguous data



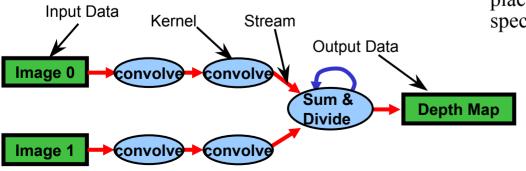
Approach

In Situ Processing


Processor within Memory

Adaptive Cache Management

Adaptive Memory


Leverage application knowledge and run-time information to extract locality from apparently pseudorandom access patterns.

Computation Stream within Memory

Algorithm, Compile & Data Placement

Applications manage memory hierarchy so data placement and flow is tailored to application specific needs.

Perfect Latin Squares: conflict-free access

DIS Projects Matrix

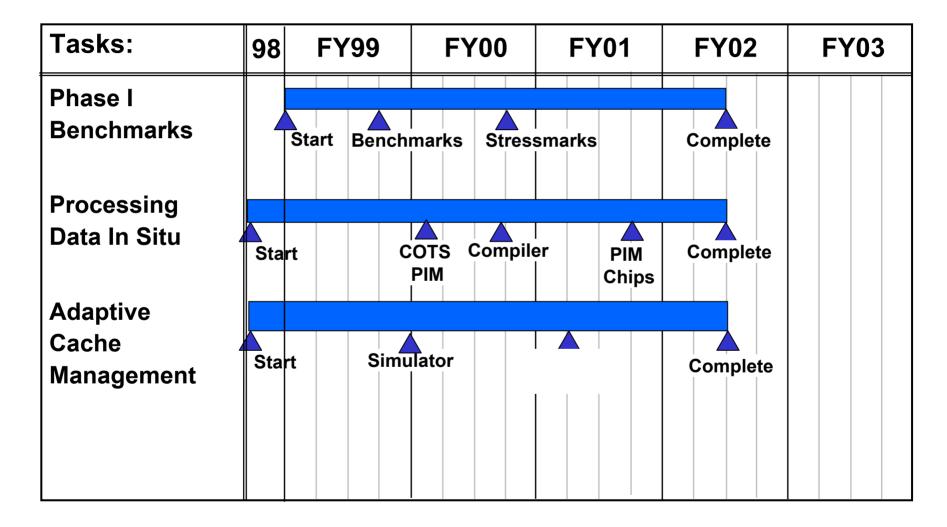
AO#	Project Title	Organization	In Situ Processing		Adaptive Cache Management		System Architecture
			PIM	CSIM	AM	AC & DP	
D347	FLASH Graphics System & Architecture	Stanford University					•
E254	ImagEn: Image Manipulation Engine	Stanford University		•	•		
E336	Intelligent DRAM (IRAM) and ISTORE	University of California, Berkeley	•			•	•
E393	Adaptive Structure Aware Memory Systems	University of Utah			•	•	
G182	Adaptive Memory Reconfiguration Management (AMRM)	University of California, Irvine			•	•	
G183	Active Database Technology	Massachusetts Institute of Technology			•	•	•
G185	Smart Memories: A Universal Computing Element	Stanford University	•	•	•	•	•
G215 *J099	DIVA	USC Information Sciences Institute	•			•	
H306	SLIIC	USC Information Sciences Inst East	•				•
H307	PIM Applications & DIS Benchmarks	Atlantic Aerospace Electronics Corp.					*
H309	Algorithms for Data Intensive Applications on Intelligent & Smart Memories (ADVISOR)	University of Southern California			•	•	
H316	Malleable Caches for Data-Intensive Computing	Massachusetts Institute of Technology			•	•	
H318	Algorithmic Strategies for Compiler Controlled Smart Caches	New York University			•		

DIS Benchmarks and Stressmarks Correlation Matrix

Benchmarks are focused code that retain the context of the enveloping application	
---	--

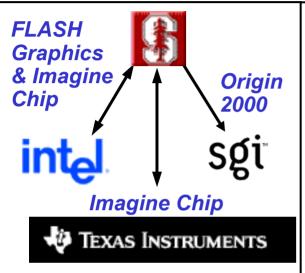
Stressmarks are a collective suite of smaller, specific procedures that illustrate DIS attributes.

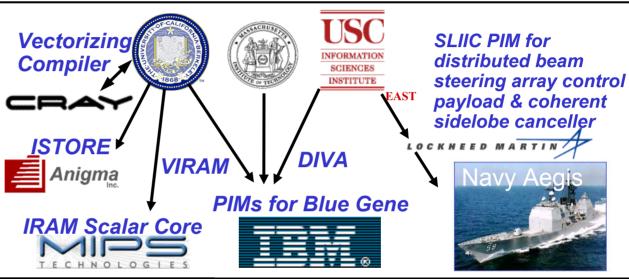
	SAR Ray- Tracing	Data Mgmt	Multidimen- sional DFT	Image Under- standing
Pointer Stress mark Small blocks at unpredictable locations. Can be threaded.				
Update Stress mark Small blocks at unp redictable locations.				
Matrix Stress mark Dependent on matrix representation. Likely to be irregular or mixed, with mixed densities.				
Neighborhood Stress mark Regular access to pairs of words at arbitrary distances, and irregular access to histogram.				
Field Stress mark Regular, dense, little re-use.				
Corner-Turn Stress mark Data movement w/oprocessing.				
Transitive Closure Stress mark Dependent on data organization. Likely to be dense and irregular or mixed.				


" Correlated": the benchmark	contains an operation	on similar or identica	al to the operation tha	t the stressmark emphasize
	" Correlated": the benchmark	"Correlated": the benchmark contains an operation	"Correlated": the benchmark contains an operation similar or identication	"Correlated": the benchmark contains an operation similar or identical to the operation tha

^{= &}quot;Strongly correlated": the operation is present, and further, it is a major contributor to the performance of the benchmark.

Program Schedule






DIS Technology Transfer

